Delayed Rejection schemes for efficient Markov chain Monte Carlo sampling of multimodal distributions

نویسندگان

  • M. Trias
  • A. Vecchio
  • J. Veitch
چکیده

A number of problems in a variety of fields are characterised by target distributions with a multimodal structure in which the presence of several isolated local maxima dramatically reduces the efficiency of Markov chain Monte Carlo sampling algorithms. Several solutions, such as simulated tempering or the use of parallel chains, have been proposed to facilitate the exploration of the relevant parameter space. They provide effective strategies in the cases in which the dimension of the parameter space is small and/or the computational costs are not a limiting factor. These approaches fail however in the case of high-dimensional spaces where the multimodal structure is induced by degeneracies between regions of the parameter space. In this paper we present a fully Markovian way to efficiently sample this kind of distribution based on the general Delayed Rejection scheme with an arbitrary number of steps, and provide details for an efficient numerical implementation of the algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DRAM: Efficient adaptive MCMC

We propose to combine two quite powerful ideas that have recently appeared in the Markov chain Monte Carlo literature: adaptive Metropolis samplers and delayed rejection. The ergodicity of the resulting non–Markovian sampler is proved, and the efficiency of the combination is demonstrated with various examples. We present situations where the combination outperforms the original methods: adapta...

متن کامل

Stability of Sequential Markov Chain Monte Carlo Methods

Sequential Monte Carlo Samplers are a class of stochastic algorithms for Monte Carlo integral estimation w.r.t. probability distributions, which combine elements of Markov chain Monte Carlo methods and importance sampling/resampling schemes. We develop a stability analysis by funtional inequalities for a nonlinear flow of probability measures describing the limit behavior of the methods as the ...

متن کامل

R-package FME : MCMC tests

This vignette tests the Markov chain Monte Carlo (MCMC) implementation of Rpackage FME (Soetaert and Petzoldt 2010). It includes the delayed rejection and adaptive Metropolis algorithm (Haario, Laine, Mira, and Saksman 2006)

متن کامل

Studying Convergence of Markov Chain Monte Carlo Algorithms Using Coupled Sample Paths

I describe a simple procedure for investigating the convergence properties of Markov Chain Monte Carlo sampling schemes. The procedure employs multiple runs from a sampler, using the same random deviates for each run. When the sample paths from all sequences converge, it is argued that approximate equilibrium conditions hold. The procedure also provides a simple diagnostic for detecting modes i...

متن کامل

Asymptotically Independent Markov Sampling: a New Markov Chain Monte Carlo Scheme for Bayesian Inference

In Bayesian inference, many problems can be expressed as the evaluation of the expectation of an uncertain quantity of interest with respect to the posterior distribution based on relevant data. Standard Monte Carlo method is often not applicable because the encountered posterior distributions cannot be sampled directly. In this case, the most popular strategies are the importance sampling meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009